Developability Predictions in Therapeutic Antibody Discovery

Tools for engineering aggregation resistant antibodies

Category:
Science
Date:
July 10, 2023
Read time:
10
min
Antibody structure prediction and aggregation propensity prediction of antibody for developability on PipeBio

Antibody therapeutics are hard to make. In order to bring a candidate to market, there are several ‘developability’ factors that need to be considered, more broadly this includes characteristics such as, safety, immunogenicity, solubility, specificity, stability, manufacturability, and storability.1–3

Specifically, liabilities such as post-translational modifications (PTMs),4 deamidation, oxidation and isomerization,5,6 can cause serious issues in downstream development.

To complicate matters, as all of these factors are physically linked, trying to fix one issue alone (increasing specificity) may cause another factor to change (increasing aggregation).

Solving this multivariate optimization problem is not straightforward, the non-linear associations and high dimensionality make for a uniquely challenging task. Therefore, predicting and fixing these properties (quickly and cheaply) at an early stage is critical to avoid wasting resources on failed candidates.

Predicted single-domain antibody 3d structure modeled and aggregation propensity highlighted in 3d structure viewer in the PipeBio bioinformatics software web application.
Illustration 1. 3-dimensional structure viewer on PipeBio displaying predicted hydrophobic residues on a predicted Camelid single-domain antibody structure.

One issue that affects many of the factors listed above that needs to be balanced when developing biologics for clinical usage is aggregation. As part of the bioinformatics liability identification toolbox, PipeBio’s aggregation analysis pipeline has been developed based on state-of-the-art techniques which include deep learning models for predicting tertiary structure combined with per-residue aggregation scoring.

This tool can help scientists dealing with information overload de-risk their therapeutic antibody discovery workflows by rapidly analyzing antibody, nanobody or TCR sequences for aggregation prone regions.

Antibody Developability: The Challenges of Antibody Aggregation

Aggregation is a major problem in antibody developability.7 Not only is aggregation dangerous (think amyloidosis), it can impact therapeutic efficacy and immunogenicity. Furthermore, aggregation is also a practical manufacturability problem8: what good is a therapy that can’t be stored and shipped to patients? 

Understandably, to obtain FDA approval for a clinical usage, it is likely that proof must be given that a newly developed antibody will not aggregate. Combined with the high costs associated with testing for antibody stability, aggregation issues can dramatically slow the rate of bringing new therapeutics to market.

There are, however, many tools which can be used to support the development of stable and effective antibody therapeutics that range from experimentation, physico-chemical computation, and machine learning.

The Science of Antibody Aggregation

Antibody aggregation occurs when it is energetically favorable for monomers of proteins to come together and interact. This is dictated by factors such as pH, temperature, isoelectric point (pI), ionic strength, protein concentration, and secondary structure.9 Additionally, surface exposed hydrophobic regions pose a real danger for aggregation, as it is not energetically favorable to have hydrophobic regions facing water.

Simply put, “the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation…”.10

A similar issue occurs with single-chain variable fragments (scFv), where the hydrophobic surfaces can dissociate and interact with other hydrophobic regions causing aggregation. This further explains why the smaller Camelid nanobodies (VHH)11,12 are so appealing, as instead of the typical hydrophobic regions of VH domains, they have a hydrophilic region which does not bind light chains and increases solubility.10

However, these VHHs can still suffer from misfolding and aggregation,13 so detecting and preventing aggregation can not be ignored while developing therapeutic nanobodies either.

Detecting Aggregation and Aggregation Prone Regions - Experiment vs Computation

Methods for detecting or predicting aggregation fall into the categories of experiment or computational prediction. Though experimentation is the gold standard for determining antibody aggregation, it would be massively cost prohibitive to perform experiments on the entire antibody or nanobody space.

Though they are less accurate, computational techniques are high-throughput and can be significantly more cost effective. Computational models can be physics based and rely solely on physico-chemical properties or used machine learning algorithms where experimental data is used as inputs for training models to predict aggregation propensity. 

Experimentation

There are several experimental techniques which are industry standard, such as size exclusion chromatography (SEC), hydrophobic interaction chromatography (HIC), affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) and stand-up monolayer adsorption chromatography (SMAC). SEC is the standard method for measuring protein aggregation along with HIC as a complementary tool.14

Additionally, AC-SINS is useful for measuring antibody or nanobody propensity to self-associate.15 To increase confidence, multiple experimental values can be used in tandem, such as the consensus of SMAC, SINS and HIC.16

Computation

Computational methods for predicting aggregation typically take sequence or structure data as inputs, and can be physics or ML-based. In some cases, they are designed to predict aggregation per sequence, which is particularly useful for protein developers who have a lot of data to analyze and short deadlines. Or they can be designed to predict scores at the per residue level which is more explainable. 

An example of a sequence-property model is the Zyggregator method, which outputs aggregation scores per residue from sequence data inputs, such as alpha and beta-helix propensity, hydrophobicity, charge, hydrophobic patterns, gatekeeper residue, and local stability into account.17

Another example is SSH2.0 (SSH stands for SMAC, SGAC-SINS, and HIC), a sequence-ML method, which uses aggregation data to train a support vector machine (SVM) ensemble model to predict aggregation.18,19

With respect to structural-property models, which require 3-dimensional atom positions as input, a popular example is Schrodinger's BioLuminate Package (AggScore20). AggScore is based entirely on tertiary structure inputs which measure the hydrophobic and electrostatic surface patches. Alternatively, Therapeutic Antibody Profiler (TAP)21,22 compares developmental antibodies to clinical-stage therapeutic antibodies using five developability values, such as CDR length, surface charge and hydrophobicity, and structural Fv charge symmetry (SFvCSP).

Note that TAP only requires sequence data as input, as the atom positions used in TAP are generated by the deep learning structural prediction tool ABodyBuilder2.

Avoiding Aggregation

It isn’t enough to simply detect aggregation liabilities, they must be removed.

This is by no means a solved problem and a complete set of attributes determining aggregation resistance are not well mapped. However, some heuristics have been developed; for example, it has been shown that aggregation of nanobodies can be circumvented by simply adding a positive charge to the CDRs.23

Other strategies include inferring stability by combining sequence and thermostability data,24 retrofitting variables domains,25 the introduction of “artificial aggregation gatekeeper residues”,26 or “camelization” of human VH domains.10

There are also in vivo platforms for evolving aggregation resistant proteins, such as the tripartite β-lactamase enzyme assay (TPBLA), which can screen and evolve ‘manufacturable’ biopharmaceuticals as well as rank innate aggregation prone peptides.27 

Computational methods can also be used to engineer antibodies. For instance, to help in the selection of possible mutations for conferring aggregation resistance, the open source Aggrescan3D (A3D) tool can be used.28

A3D calculates aggregation scores per residue for a static (or dynamic using CABSs29) structure, as well as performs what-if scenarios for point mutations (using energy minimized structures in FoldX30). The key to this calculation is estimation of the solvent accessible surface areas (SASA)31 32 where the topological character of antibodies are accounted for in aggregation scoring.

Similarly to Aggrescan3D, a software tool called SolubiS attempts to optimize stability by introducing mutations that reduce aggregation.

We have performed a thorough review of available aggregation prediction servers and have provided a summary table with links below, additionally a further review of the state-of-the-art computational techniques can be found by Navarro and Ventura.33

Bioinformatics Software with Open Access Servers

Second Generation Algorithms (post-2016)

The second generation algorithms tend to take either secondary or tertiary data into account, employ machine learning or a combination of different advanced techniques.

Name

Inputs

Outputs

DOI

Year

Notes

SSH2.0

Sequence

Aggregation Score Per Sequence

doi.org/10.3389/fgene.2022.842127

2022

ML Based

Therapeutic Antibody Profiler (TAP)

Sequence

5 Metrics

doi.org/10.1073/pnas.1810576116

2019

Deep Learning Based

Aggrescan3D 2.0

PDB File

Aggregation Score Per Residue

doi.org/10.1093/nar/gkz321

2019

Multiple combined algorithms

Solubis

PDB File

Aggregation nucleating regions

doi.org/10.1093/protein/gzw019

2016

Multiple combined algorithms

Waltz

Sequence

Amylogenic regions

doi.org/10.1093/nar/gkz758

2019

Amyloid focussed

Cordax

Sequence

Amylogenic score per residue (binary estimation)

2020

ML Based and uses multiple combined algorithms

ANuPP

Sequence

APRs

doi.org/10.1016/j.jmb.2020.11.006

2021

ML Based

AmyloGram

Sequence

Amyloid probability per sequence

doi.org/10.1038/s41598-017-13210-9

2017

Ml Based

SOLart

PDB File

Scaled solubility score %

doi.org/10.1093/bioinformatics/btz773

2022

ML Based

PON-Sol2

Sequence

Identification of solubility affecting substitutions

doi.org/10.3390/ijms22158027

2021

ML Based

First Generation Algorithms (prior to 2016)

The first generation algorithms exclusively deal in sequence data, are mainly amyloid focussed and do not employ machine learning.

Name

Inputs

Outputs

DOI

Year

Notes

TANGO

Sequence

Aggregation nucleating regions

doi.org/10.1038/nbt1012

2004

Amyloid focussed

AGGRESCAN (1.0)

Sequence

Aggregation Score Per Residue

doi.org/10.1186/1471-2105-8-65

2007

FoldAmyloid

Sequence

Amylogenic regions

2009

Amyloid focussed

ArchCandy (2.0)

Sequence

Amylogenic regions

doi.org/10.1016/j.jalz.2014.06.007

2014

Amyloid focussed

BetaScan

Sequence

Beta strand prediction

doi.org/10.1371/journal.pcbi.1000333

2009

Amyloid focussed

GAP

Sequence

Amyloid probability per residue

doi.org/10.1093/bioinformatics/btu167

2014

Amyloid focussed

CamSol

Sequence

Aggregation Score Per Sequence

doi:10.1016/j.jmb.2014.09.026

2014

Not open access

PASTA 2.0

Sequence

APRs

doi.org/10.1093/nar/gku399

2014

Amyloid focussed

Other Models and Algorithms

There are also published papers and methods that boast strong predictive power, though you will need to either set them up yourself or pay a license fee.

Name

Inputs

Outputs

DOI

Year

Notes

Support Vector Machine (SVM)

Sequence

Aggregation Prediction Probability

doi.org/0.1080/19420862.2022.2026208

2022

ML Based

Random Forest + Logistic Regression

Sequence

Aggregation Prediction (retention time)

doi.org/10.1093/bioinformatics/btx519

2017

ML Based

Spatial Aggregation Propensity (SAP)

PDB File

Location & size APRs

doi.org/10.1073/pnas.0904191106

2009

ML Based

Zyggregator

Sequence

Aggregation Score(s) per Residue

doi.org/10.1039/b706784b

2008

Physics Based

Random Forest Model

Sequence

Amyloidogenesis score

doi.org/10.1371/journal.pone.0053235

2013

ML Based

APPNN

Sequence

amyloidogenicity propensity

R Package

2015

ML Based

AggScore

PDB File

APRs

doi.org/10.1002/prot.25594

2018

License Required

Note there are further models not reviewed by PipeBio listed here.

Predicting Developability issues in PipeBio

Lets look at an example which demonstrates the utility of some of the tools available at PipeBio for developing therapeutic biologics:

Hydrophobicity and Aggregation Score Tracks

Let’s say you have a nanobody sequence that has shown promise with respect to selectivity for a target of interest, though it also suffers from poor solubility. To improve the sequence you perform a bio-panning assay and collect enriched sequences with increased selectivity. After panning, you have a new improved set of sequences, however, their stability and solubility are still uncertain.

Using the PipeBio toolkit, you can easily investigate the potential solubility of your selected sequences for further downstream development. The first step in the developability analysis is to upload the sequences, align and annotate them.

Then, the hydrophobic patches in different regions can be compared across the aligned sequences using the hydrophobicity track. The hydrophobicity track calculates a windowed average hydropathicity score of residue hydrophobicity (Kyte-Doolittle scale).34

In this case red is hydrophobic and blue is hydrophilic. To simplify, here are two example candidates, Seq1 and Seq2:

Hydrophobicity tracks or hydrophobic patches on Nanobody VHH antibody sequence
Figure 1. Hydrophobicity tracks (hydrophobic patches) for Seq1 and Seq2

In the first iteration, based on the calculation of hydrophobicity alone it isn’t clear which of the two sequences would be more aggregation resistant.

In the CDR-H1 of Seq2 there exists a more soluble hydrophilic region, however there also appears to be a less soluble hydrophobic region in CDR-H3.

This is more clearly seen in the zoomed and cropped hydrophobicity track of the CDR-H1 and CDR-H3.

Hydrophobic and hydrophilic patches show on nanobody VHH antibody sequences
Figure 2. CDR-H1 and CDR-H3 of Seq1 and Seq2 displaying hydrophobic and hydrophilic patches

The method above does not take into account the tertiary structure of the sequences. As the nanobodies are 3-dimensional structures, what really matters are the hydrophobic regions that are exposed to the solvent.

To get a more nuanced understanding of the sequences, a method which takes into account the tertiary structure can be applied in PipeBio. First the 3D structure of a nanobody (or antibody) is predicted from sequence data using Immune Builder.21 (Alternatively, raw crystal structure data can be uploaded).

Secondly, this structure is used to calculate the per-residue aggregation score (A3D) score,35 which indicates aggregation prone patches in red and aggregation resistant patches in blue28.

Here is a zoomed and cropped view of the hydrophobicity and A3D scoring track for CDR-H1 and CDR-H3:

Aggregation resistant regions and aggregation prone regions on VHH nanobody antibody sequence showing hydrophobicity and aggregation scores
Figure 3. Aggregation scores and hydrophobicity scores mapped for each amino acid residue of the nanobody sequences.

Now it is easier to see that the (blue) negative patch of A3D scores in the CDR-H1 region of Seq2 increases our confidence in the aggregation resistance of Seq2, and the (red) positive patches of A3D scores appear in the CDR-H3 region of Seq1 which decreases our confidence in the aggregation resistance of Seq1.

3-Dimensional Structural View of Aggregation Scores

Using the PipeBio protein structure display tools, a 3-dimensional surface plot of aggregation propensity scores illuminates how aggregation resistant sequences can be selected. In this case aggregation prone regions are shaded red and aggregation resistant regions are shaded blue, as shown in view of CDR-H1 (Figure 4).

Here, it is visually clear that the aggregation resistant patch in the left is smaller in Seq1 relative to Seq2, and the aggregation prone region in the right is larger in Seq1 relative to Seq2; the F at IMGT position 115 (F115), which has a high aggregation score of 1.95, is particularly prominent. This is strong evidence that indicates Seq2 will be less likely to aggregate.

Three-dimensional 3d image of tertiary structure showing antibody aggregation prone and aggregation resistant regions mapped on CDR-H1 of nanobody sequences.
Figure 4. 3-dimensional surface plot with aggregation scores for sequence 1 (Seq1) and sequence 2 (Seq2) showing CDR-H1. For reference, both sequences share an S at IMGT position 83 (S83) and an F at IMGT position 28 (F28) in CDR-H1. Note that, due to the effect of the surrounding hydrophobic residues, the aggregation score at F28 decreases from -0.21 to -1.13 from Seq1 to Seq2.

If the structures are rotated about the vertical axis by 45 degrees, the right side of the structure in Figure 4 is more easily seen – including the CDR-H3 region. In Figure 5, CDR-H3 (view 1) F115 is shown more clearly along with the surrounding surface exposed patches, such as Y108 with a score of 1.43 in Seq1.

Conversely, at IMGT 115 in Seq2, there is a leucine with a smaller score of 1.30, and the surrounding surface exposed patches are aggregation resistant with a score of -2.1 for P114; further evidence for choosing Seq2 over Seq1.

Three-dimensional 3d image of tertiary structure showing antibody aggregation prone and aggregation resistant regions mapped on CDR-H3 of nanobody sequences.
Figure 5. CDR-H3 (view 1). 3-dimensional surface plot with aggregation scores for sequence 1 (Seq1) and sequence 2 (Seq2) showing CDR-H3 facing front (view 1). For reference, both sequences share an W at IMGT position 118 (W118).

If the structures are now rotated so the CDR-H3 regions are facing the left (Figure 6), it can be seen that the aggregation prone regions around R115 stick out in Seq1, where the same region is more concave.

Based on this conformational and residue difference, it can be seen that the aggregation score at F115 is 1.95 for Seq1 but drops to 1.30 for Seq2 (at L115).

Furthermore, the addition of an E at 113 significantly changes the aggregation scoring in that region where the E113 has a score of -1.27 and A114 has a score of 1.14.

Three-dimensional 3d image of tertiary structure showing antibody aggregation prone and aggregation resistant regions mapped on CDR-H3 of nanobody sequences.
Figure 6. CDR-H3 (view 2). 3-dimensional surface plot with aggregation scores for sequence 1 (Seq1) and sequence 2 (Seq2) showing CDR-H3 facing to the left (view 2). For reference, both sequences share an W at IMGT position 118 (W118).

This theoretical example consists of real nanobody structures, namely the insoluble Dp47d (Seq1) and the soluble version HEL4 (Seq2).36

HEL4 is an isolated human VH domain with similar properties to camelid VHH domains, which has been shown to be resistant to aggregation.27 HEL4 was obtained from HEL biopanning with a phage-display library of VH dAbs - Dp47D being the template.

These nanobodies illustrate the utility of tertiary structure prediction combined with the aggregation scoring. As was clear form the first iteration, the sequentially calculated hydrophobicity was insufficient to predict the aggregation propensity of two related sequences.

Only after the tertiary structural information was added and the scores were updated to account for surface exposure was the difference in aggregation propensity more easily seen.

Conclusions

Developability characterizations for antibody discovery workflows are important as they are key to preventing downstream issues that cause delays and drive up costs. Aggregation propensity, for instance, can prevent the successful application of new therapeutics by decreasing stability and efficacy.

We have reviewed many web based tools to both predict and design structures with improved aggregation resistance.

We furthermore have integrated aggregation and 3D structure prediction tools in PipeBio which combines state of the art technology consolidated in a single platform.

Though the utility of the aggregation analysis at PipeBio is clear, some challenges (solutions still under development) still persist. Firstly, in theory the A3D scoring can take into account the dynamic nature of antibodies using software such as CABs to capture different conformations that may exist in solution.

However, this does not take into account the dynamics of the antibody when it is bound to its antigen, or correct for environmental factors such as pH. Complementary techniques will be required in the future to account for these limitations. 

A second limitation is overall prediction. Though having a per-residue score is insightful, given many scientists have a large number of sequences to analyze at a time, a simple “go/no-go” score would dramatically increase throughput. This is a difficult challenge as the current state-of-the-art models, though boast strong predictive power on the training data, do not perform well on new datasets.

This brings about further challenges of handling false positives, where sequences are selected as stable when in reality will aggregate; and false negatives, where the end user loses out on potentially valuable sequences that were predicted to aggregate but would have been stable in practice. 

In the future, as more experimental data is collected, deep learning models can be leveraged to help make stronger predictions that are more accurate and generalizable across domains.

References

Right-pointing black chevron

1. Raybould, M. I. J. & Deane, C. M. The Therapeutic Antibody Profiler for Computational Developability Assessment. Methods Mol. Biol. Clifton NJ 2313, 115–125 (2022).

2. Fernández-Quintero, M. L. et al. Assessing developability early in the discovery process for novel biologics. mAbs 15, 2171248 (2023).

3. Zhang, W. et al. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib. Ther. 6, 13–29 (2023).

4. Ramazi, S. & Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database J. Biol. Databases Curation 2021, baab012 (2021).

5. Lu, X. et al. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. mAbs 11, 45–57 (2019).

6. Gupta, S., Jiskoot, W., Schöneich, C. & Rathore, A. S. Oxidation and Deamidation of Monoclonal Antibody Products: Potential Impact on Stability, Biological Activity, and Efficacy. J. Pharm. Sci. 111, 903–918 (2022).

7. Li, W. et al. Antibody Aggregation: Insights from Sequence and Structure. Antibodies 5, 19 (2016).

8. Vázquez-Rey, M. & Lang, D. A. Aggregates in monoclonal antibody manufacturing processes. Biotechnol. Bioeng. 108, 1494–1508 (2011).

9. Lee, S., Choi, M. C., Al Adem, K., Lukman, S. & Kim, T.-Y. Aggregation and Cellular Toxicity of Pathogenic or Non-pathogenic Proteins. Sci. Rep. 10, 5120 (2020).

10. Bannas, P., Hambach, J. & Koch-Nolte, F. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Front. Immunol. 8, (2017).

11. Rahbarizadeh, F., Ahmadvand, D. & Sharifzadeh, Z. Nanobody; an Old Concept and New Vehicle for Immunotargeting. Immunol. Invest. 40, 299–338 (2011).

12. Pain, C., Dumont, J. & Dumoulin, M. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena. Biochimie 111, 82–106 (2015).

13. Kunz, Patrick et al. The structural basis of nanobody unfolding reversibility and thermoresistance | Scientific Reports.

14. Baek, J. HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mAb Aggregates.

15. Bailly, M. et al. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. mAbs 12, 1743053 (2020).

16. Zhou, Y. et al. SSH2.0: A Better Tool for Predicting the Hydrophobic Interaction Risk of Monoclonal Antibody. Front. Genet. 13, 842127 (2022).

17. Tartaglia, G. G. & Vendruscolo, M. The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 37, 1395–1401 (2008).

18. Chen, Z. et al. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34, 2499–2502 (2018).

19. Chen, K., Jiang, Y., Du, L. & Kurgan, L. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J. Comput. Chem. 30, 163–172 (2009).

20. Sankar, K., Krystek Jr, S. R., Carl, S. M., Day, T. & Maier, J. K. X. AggScore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins Struct. Funct. Bioinforma. 86, 1147–1156 (2018).

21. Abanades, B. et al. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Commun. Biol. 6, 1–8 (2023).

22. Raybould, M. I. J. et al. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl. Acad. Sci. 116, 4025–4030 (2019).

23. Zhong, Z. et al. Positive charge in the complementarity-determining regions of synthetic nanobody prevents aggregation. Biochem. Biophys. Res. Commun. 572, 1–6 (2021).

24. Kunz, P. et al. Exploiting sequence and stability information for directing nanobody stability engineering. Biochim. Biophys. Acta 1861, 2196–2205 (2017).

25. Dudgeon, K. et al. General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc. Natl. Acad. Sci. 109, 10879–10884 (2012).

26. Kant, R. van der et al. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. J. Mol. Biol. 429, 1244 (2017).

27. Ebo, J. S. et al. An in vivo platform to select and evolve aggregation-resistant proteins. Nat. Commun. 11, 1816 (2020).

28. Kuriata, A. et al. Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res. 47, W300–W307 (2019).

29. Jamroz, M., Kolinski, A. & Kmiecik, S. CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics 30, 2150–2154 (2014).

30. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).

31. Voynov, V., Chennamsetty, N., Kayser, V., Helk, B. & Trout, B. L. Predictive tools for stabilization of therapeutic proteins. mAbs 1, 580–582 (2009).

32. Chennamsetty, N., Voynov, V., Kayser, V., Helk, B. & Trout, B. L. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. U. S. A. 106, 11937–11942 (2009).

33. Navarro, S. & Ventura, S. Computational methods to predict protein aggregation. Curr. Opin. Struct. Biol. 73, 102343 (2022).

34. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

35. Kuriata, A., Iglesias, V., Kurcinski, M., Ventura, S. & Kmiecik, S. Aggrescan3D standalone package for structure-based prediction of protein aggregation properties. Bioinformatics 35, 3834–3835 (2019).

36. Jespers, L., Schon, O., James, L. C., Veprintsev, D. & Winter, G. Crystal Structure of HEL4, a Soluble, Refoldable Human VH Single Domain with a Germ-line Scaffold. J. Mol. Biol. 337, 893–903 (2004).

Interested in computational tools for antibody discovery?

Other recent posts